What is Gluconeogenesis? What are the Steps and Importance of Metabolism?

Gluconeogenesis is the process of synthesizing glucose from non-carbohydrate sources. Where does gluconeogenesis occur? The process takes place mainly in the liver and limited extent in the kidney and small intestine under some conditions.

It is also called “Endogenous glucose Production” (EGP). It is one of the metabolic pathways.

The production of glucose from other carbon skeletons is necessary since the testes, erythrocytes and kidney medulla exclusively utilize glucose for ATP production.


Why is Gluconeogenesis important? During neoglucogenesis, the Glycogen (the Storage form of Animal Starch) is made with long chains of glucose molecules. It is broken down into glucose which then enters the blood.

Gluconeogenesis definition

The definition of Gluconeogenesis is given below

 The biosynthesis of carbohydrate from simpler, non-carbohydrate precursors such as Oxaloacetate and Pyruvate is called “Gluconeogenesis“.


“Synthesis of Glucose / Carbohydrates from Non-carbohydrate precursor molecules.”

  • The starting point precursor of the pathways is a pyruvic acid molecule, although Oxaloacetic acid and DiHydroxyAcetone Phosphate also provide entry points.
  • Lactic acid, it comes from some amino acids metabolism, and Glycerol (from Fat).
  • It is similar but not the exact reverse of glycolysis, some of the steps are identical in reverse direction and three of them are new ones.
  • Glycolysis and Gluconeogenesis both are a reversible process
  • Without going into detail, the general neoglucogenesis sequence is given in the graphic on the left.
  • Notice that oxaloacetic acid is synthesized from pyruvic acid in the first step. Oxaloacetic acid is also the first compound to react with acetyl CoA in the citric acid cycle. The concentration of acetyl CoA and ATP determines the fate of oxaloacetic acid.
  • If the concentration of acetyl CoA is low and the concentration of ATP is high then neoglucogenesis proceeds. Also, notice that ATP is required for a biosynthesis sequence of the pathway.
  • Gluconeogenesis occurs mainly in the liver with a small amount also occurring in the cortex of the kidney. It occurs very little in the brain, skeletal muscles, heart muscles or other body tissue. In fact, these organs have a high demand for glucose.
  • Therefore, this pathway is constantly occurring in the liver to maintain the glucose level in the blood to meet these demands.

Steps in Gluconeogenesis

Synthesis of glucose from pyruvate utilizes many of the same enzymes as Glycolysis. Here are the gluconeogenesis pathway

Kreb’s pointed out that energy barriers obstruct a simple Reversal of Glycolysis:

  1. Between Pyruvate and PEP (Enzymes: Pyruvate Carboxylase and Phosphoenolpyruvate Carboxylase-PEPCK)
  2. Between Fructose-1,6-bis P and Fructose-6-P (Enzymes: Fructose-1,6-bisphosphate)
  3. Between Glucose-6-P and Glucose (Enzymes: Glucose-6-Phosphatase)
  4. Between Glucose-1-P and Glycogen (Enzyme: Glycogen Synthase)
Gluconeogenesis: Why this is very Important? (Simple Notes)

Three reactions of Glycolysis have a forward direction that they are essentially irreversible (see lecture notes on Glycolysis):

  • Hexokinase (or Glucokinase),
  • Phosphofructokinase, and
  • Pyruvate Kinase.

These steps must be bypassed in Gluconeogenesis. Two of the bypass reactions involve simple hydrolysis reactions.

Below is the forward reaction catalyzed by each of these Glycolysis enzymes, followed by the bypass reaction catalyzed by the Gluconeogenesis enzyme.

Step 1: Glucose Phosphorylation/Dephosphorylation

In Glycolysis, the First step is Phosphorylation

Glucose + ATP  –> Glucose-6-phosphate + ADP

Enzyme: Hexokinase or Glucokinase (Glycolysis)

In Gluconeogenesis, the first step in Glycolysis is reversible.

Glucose-6-phosphate + H2O –> glucose + Pi

Enzyme: Glucose-6-phosphatase

glucose-6-phosphate to glucose

The glucose-6-phosphatase enzyme is embedded in the endoplasmic reticulum (ER) membrane in the liver of the cells.

Evidence indicates that the catalytic site is exposed to the ER lumen. Another subunit of the enzyme is postulated to function as a translocase, providing access of substrate to the active site.

Step 2: Fructose Phosphorylation/Dephosphorylation

In Glycolysis, Step 3 is

Fructose-6-phosphate + ATP –> fructose-1,6-bisphosphate + ADP

fructose-6-phosphate to fructose-16-bisphosphate

Enzymes: Phosphofructokinase

In Gluconeogenesis, step 3 in glycolysis is reversible.

Fructose-1,6-bisphosphate + H2O –> fructose-6-phosphate + Pi

Enzyme: Fructose-1,6-Bisphosphatase

Step 3: Pyruvate Phosphorylation/Dephosphorylation

In Glycolysis, step 9 is

Phosphoenolpyruvate + ADP –> pyruvate + ATP

Enzyme: Pyruvate Kinase

For bypass of the Pyruvate Kinase reaction of Glycolysis, cleavage of 2 ~P bonds is required. The free energy change associated with cleavage of one ~P bond of ATP is insufficient to drive the synthesis of phosphoenolpyruvate (PEP) since PEP has a higher negative DG of phosphate hydrolysis than ATP.

pyruvate carboxylase enzyme reaction

In Gluconeogenesis,

The two enzymes that catalyze the reactions for the bypass of the Pyruvate Kinase reaction are the following:

a) PEP Carboxylase Reaction

Pyruvate + HCO3 + ATP –> Oxaloacetate + ADP + Pi

Enzyme: Pyruvate Carboxylase

(b) PEP Carboxykinase Reaction:

Oxaloacetate + GTP –> Phosphoenolpyruvate + GDP + CO2

Enzyme: PEP Carboxykinase

Contributing to the spontaneity of the two-step pathway are the following:

  • The free energy of cleavage of one ~P bond of ATP is conserved in the carboxylation reaction. Spontaneous decarboxylation contributes to the spontaneity of the 2nd reaction (PEP synthesis).
  • Cleavage of a second ~P bond of GTP also contributes to driving the synthesis of PEP.

About Biotin Vitamin

Pyruvate Carboxylase utilizes biotin as a prosthetic group.

Structure of Biotin molecule
  • Biotin has a 5-carbon side-chain whose terminal carboxyl is in an amide linkage to the e-amino group of lysine of the enzyme.
  • The biotin in and lysine side chains together form a long swinging arm that allows the functional group of biotin to swing back and forth between two active sites.
  • Biotin carboxylation is catalyzed at one active site of Pyruvate Carboxylase.
  • ATP reacts with HCO3 to yield carboxy phosphate. The carboxyl is transferred from this ~P intermediate to N of a ureido group of the biotin ring system.


Biotin + ATP + HCO3 –> carboxy-biotin + ADP + Pi

Biotin-dependent enzymes in animals

Pyruvate Carboxylase The first reaction in a pathway that converts 3-carbon precursors to glucose (gluconeogenesis)
Acetyl~coA carboxylase Commits acetate units to fatty acid synthesis by forming malonyl~coA
Propionyl~coA Carboxylase Converts propionate to succinate, which can then enter the citric acid cycle.
beta-Methylcrotonyl~coA carboxylase Catabolism of leucine and certain isoprenoid compounds

Other Reactions in Gluconeogenesis

1. Pyruvate Carboxylase

The enzyme converts pyruvate to oxaloacetate, is allosterically activated by acetyl coenzyme A.  The adaptive value of this regulation relates to the interconnectedness of the pathways shown at right.

pyruvate carboxylase enzyme reaction

Acetyl CoA enters Krebs Cycle by condensing with oxaloacetate, whose concentration tends to be limiting for Krebs Cycle. When Gluconeogenesis is active in the liver, oxaloacetate is diverted to form glucose (via PEP).

Oxaloacetate depletion hinders acetyl CoA entry into Krebs Cycle. The resulting increase in [acetyl CoA] activates Pyruvate Carboxylase to synthesize more oxaloacetate.

2. Lactate to Glucose

The major breakdown product of anaerobic glycolysis in muscle is lactic acid. Muscle tissue is called Lactic acid. Muscle tissue is, however, not capable of re-synthesizing glycogen from lactate.

This conversion, therefore, takes place entirely in the liver. Muscle lactate is transported by the blood to the liver where it is converted to Glucose and glycogen by enzymes involved in gluconeogenesis.

Liver glycogen then breaks down to glucose and is carried back to muscles by blood. This conversion of muscle lactic acid to glucose in the liver and its re-entry into muscle is called the Cori cycle.

3. Amino acids to Glucose

The major portion of glucose formed in gluconeogenesis come from amino acids. Glycogenic amino acids are converted to either citric acid cycle intermediates or pyruvate. These substances from glucose in the liver.

Pyruvate is carboxylated to form OAA by pyruvate carboxylase and ATP in mitochondria. Further reactions in the formation of glucose take place in the cytoplasm and therefore oxaloacetate must come out of mitochondria.

Oxaloacetate, however, does not readily permeate through the mitochondrial membrane and thus requires conversion to a compound that could diffuse out of mitochondria. This is achieved mainly by its conversion to malate which readily passes through the mitochondrial membrane. In the cytoplasm, malate is reconverted to oxaloacetate.

Oxaloacetate is then decarboxylated to form phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase and GTP. The conversion of phosphoenolpyruvate (PEP) to fructose-1, 6-diphosphate is carried out by enzymes of glycolysis found in all tissues.

The hydrolysis of fructose diphosphate to form fructose-6-phosphate requires a specific fructose diphosphatase. Fructose-6-phosphate also requires a specific glucose-6-phosphatase for its conversion to Glucose. Both the abovementioned specific enzymes are found only in liver and kidney tissues.

4. Glycerol to Glucose

Glycerol arising from the breakdown of triacylglycerides is also a good source for the synthesis of glucose in the liver. It requires initial phosphorylation by ATP followed by reduction to form DHAP (Dihydroxyacetone phosphate) which enters the pathway of gluconeogenesis.

Importance of Gluconeogenesis

  • A continual supply of Glucose is necessary as a source of energy, especially for the Nervous system and the Erythrocytes.
  • Gluconeogenesis mechanism is used to clear the products of the metabolism of other tissues from the blood, eg: Lactate, produced by Muscle and erythrocytes and Glycerol, which is continuously produced by adipose tissue.

Hormonal regulation

  • Glucagon and Glucocorticoids increase NeoGlucogenesis.
  • Insulin inhibits the process
  • When glucagon levels rise, the cellular cAMP levels also increase. The cAMP concentration inactivates the enzyme Pyruvate dehydrogenase (PDH) by phosphorylation process. This would ensure that more pyruvate is converted to oxaloacetate and thereby channeled neoglucogenesis.
  • Ethanol inhibits this pathway
  • The gluconeogenesis and glycolysis have opposite directions, their reaction to regulatory signals may be opposite or they work against one of the Futile cycles.

The summery has been given in the below table

EnzymeActivation Inhibition
Pyruvate Carboxylase Cortisol, Glucagon, Adrenalin, Acetyl CoA Insulin, ADP
PEPCK -do- Insulin
Fru-1,6-bis-Phosphate -do- Fru-1,6-Bis P, AMP, Fru-2,6-BP
Glc-6-Phosphatase -do- Insulin

Clinical Significance

  • The Enzyme Pyruvate carboxylase, a deficiency is seen as an inborn error of metabolism, where mental retardation is manifested.
  • Its incidence is one in 25,000 births.
  • Pyruvate carboxylase gene is located in human chromosome No. 11.
  • In type II diabetes mellitus condition, the risen Gluconeogenesis is responsible for the production of excessive Glucose after an overnight fast.

About Biochemistry Den

Biochemistry Den is one of the most useful resources to get complete information on relavant topics. Infact, Biochemistry is a Parental subject to all life science related branches. Here we are providing basic informative resources on What is Biochemistry, about Biochemistry career, Biochemistry Job info and more details which are helpful to students, teachers, and scholars.

Leave a Reply

Your email address will not be published. Required fields are marked *